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Abstract

A brief overview is given of planetary exploration to date, with a

focus on outer planet missions, in particular the proposed 1996 Cassini

mission to Saturn and Titan. A proposed infrared spectrometer, CIRS,

for remote sensing of the atmospheres of Saturn and Titan from the

Cassini orbiter is presented. The science return of CIRS would be

significantly enhanced if a near phonon-noise limited 65-90K infrared

detector could be developed. A description of the ongoing Goddard/NIST-

Boulder effort to build a high sensitivity, high T c bolometer is also

presented.

Past and Present Planetary Exploration, and the 1996 Cassini Mission

A long line of Fourier Transform Spectrometers (FTS's) has made

significant contributions to our understanding of planets and

satellites, from the earth-observing FTS's of Nimbus 3 (1969) and Nimbus

4 (1970), through the Mars observing FTS of Mariner 9 (1971/1972) to the

Voyager IRIS observations of Jupiter (1979), Saturn and Titan (1981),

Uranus (1986), and Neptune (1989). These interferometers have returned

substantial scientific benefits (see Figure I), in spite of using

relatively insensitive near-ro_m-tem_Eature thermal-type infrared

detectors (detectivity D* ! i0 _ cT_z_'_/W) as compared with the much
more sensitive detectors (D* I i0 ) available at liquid helium

temperature. D$ is r_ted to noise equivalent power (NEP) by the
relationship NEP = A d /D*, where A d is the detector area. A severely
limited mass budget, and long lifetime in the case of outer planet

missions, r_le out the use of liquid helium. Radiative and mechanical

coolers remain, for which the practical lower limit for the focal plane

is 65-90K. There are no thermal detectors specifically optimized for

these temperatures, and in fact no moderately-cooled thermal detector (T

Z 65K) offers substantial improvement in performance beyond the

thermopile used on Voyager/IRIS (D* = 0.gx10_)." To enhance the return

from infrared remote sounding of the planets, planetary missions have a

compelling need for sensitive 65-90K thermal-type detectors, a need that

has not been met by detector development programs.

Preliminary investigations of the outer planets were performed by

the Pioneer and Voyager spacecraft. Subsequent missions planned for in-

depth exploration of Jupiter and Saturn from orbital spacecraft are

Galileo and Cassini. Galileo, launched in 1989, is to acquire data

while in Jupiter orbit. A probe will also be sent into Jupiter's

atmosphere. A series of planetary missions utilizing a newly-designed
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generic spacecraft, the Mariner Mark II, is now under development. The

first two missions under the Mariner Mark II series will be the CRAF

cometary encounter, and the Cassini mission to Saturn and Titan. The

CRAF and Cassini missions are intended to provide information on the

origin and evolution of the solar system.

The Cassini mission is a joint NASA/ESA enterprise, it will be

launched in 1996 aboard a Titan/IV Centaur, with a Jupiter flyby in

2000, and Saturn arrival in 2002. At Saturn the ESA-supplied probe will

enter the atmosphere of Titan. Subsequently, the NASA-supplied orbiter

will orbit Saturn about 60 times, making 35 close Titan flybys during

2002-2006. Figure 2 shows the outline of the Cassini orbiter and probe.

(To get a sense of scale, the high-gain antenna (HGA) has a diameter of

3.66 m). The orbiter has an allocation of 197 kg and about 200 watts

for scientific instruments, and can return to earth about 1 to 2 million

bits per overpass of the deep-space network on earth.

CIRS is one of the baseline infrared experiments on the Cassini

orbiter model science payload. CIRS will retrieve information on the

atmospheres of Titan and Saturn with good vertical resolution, from deep

in their tropospheres to high in their stratospheres, and into the ,ipper

few centimeters of the regoliths of icy objects. The science addressed

by CIRS includes: I) determination of the global thermal structure to

test theories of atmospheric dynamics and general circulation, 2)

mapping and tracking the motion of thermal patterns to determine their

role in dynamics, 3) determination of global gas composition (including

isotope ratios), 4) mapping and tracking composition variations to

determine effects of chemistry, photochemistry and dynamics, 0) st,ldying

the synthesis of organic compounds, 6) determination of global

information on clouds and hazes, 7) determination of information on non-

equilibrium processes in the upper stratosphere, and 8) determination of

information on atmospheric transport and other processes obtained from

simultaneous measurements of composition, temperature, and winds. The

science addressed for satellites and rings includes the mapping of

composition and thermal characteristics, to test theories of their

origin and evolution.

CIRS will use a dual interferometer configuration with a common

linear _otor (figure 3). The far-infrared FTS (table i) will cover i0-

300 cm -_ with a single thermopile detector. The mid-infrared FTS will

cover 200-1400 cm -_, with a single thermopile detector [rom 200-650 cm -I

, a ix20 photoconductive HgCdTe array from 6_0-II00 cm -*, and a Ix20
photovoltaic HgCdTe array from 1100-1400 cm -_. The choice of detectors

is limited by the minimum achievable focal plane temperature, around 75K

for the radiative cooler design in CIRS. The long-wavelength infrared

detectors proposed for CIRS in focal planes i and 2 (table I) are

Schwarz-type thermopile detectors to be supplied by Karlsruhe University
in Germany. The dc detectivity is 3 to 4x10 _, with a time constant of

25 ms (Shimadzu of Japan makes a similar detector). By comparison, the
thermodynamic limit (phonon-noise limit) at 80K is a D* of 5x10 The

area-solid angle product for CIRS dictates a minimum detector diameter

of 1.1 mm for perfectly concentrating f/0.5 optics in vacuum.
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A rich array of molecular species on Saturn and Titan may be
studied with the thermopile detectors currently baselined for CIRS.
Nevertheless, a greater array of trace molecules over a wider range of
altitudes could be observed, were more sensitive detectors to become

available. Beyond Cassini, an improved thermal detector would benefit

proposed missions to study the elemental composition, cloud structure,
and meteorology of the planetary atmospheres of Uranus and Neptune."

Planetary observations from earth-orbiting telescopes (Plato) and on the

Space Station would also benefit.

Possible Improvement with Long-Wavelength Detectors

Higher sensitivity with high temperature superconductor (HTS)

detectors would greatly improve the determination of the presently

detected hydrocarbons and nitriles in Titan's atmosphere, and will

permit the detection of new nitriles. Knowledge of the altitude and

spatial distribution of CO is central to the understanding of the

chemistry of the oxygen-bearing molecules in Titan's atmosphere. A

synthetic far-infrared limb spectrum has been calculated for Titan, a

portion of which is shown in Figure 4. The emission lines are due to

HCN and CO-- a strong CO line is evident at 42.2 cm -I. Also shown are

the error bars for the projected sensitivity of the CIRS the_opile
detector, and for an HTS detector with an assumed D* of 3x10 _v. It is

evident from the comparison that the increased sensitivity of the HTS

detector is required for CIRS to map the altitude and spatial

distribution of this key oxygen-bearing species.

The sharp change in magnetic and transport properties of high T c
superconductors at the transition opens the possibility of near-phonon-

noise limited performance at or near 80K. Bolometric responses in

granula_ _?d epitaxial HTS films have been demonstrated by a number of
_roups, _' _ncluding a collaboration between Goddard and
NIST/Boulder. V Another possibility for a sensitive detector is the

kinetic inductance bolometer, _ which has been demonstrated in low Tc

materials but not yet in high Tc.

The initial Goddard/NIST effort was a transition-edge resistance

bolometer in the composite geometry, 8 with independently fabricated

radiation absorber, superconductor thermometer, and thermal isolator

(figure 5). The superconductor thermometer is in the form of a meander

line which is also suited to implementation as a kinetic inductance

bolometer. A prototype device was fabricated in early 1989. The

prototype suffered from a long time-constant, 30 seconds, due to the

heat capacity of the underlying SrTiO 3 substrate, 500 microns thick.

Efforts since then have centered on reducing the heat capacity of

the substrate. Attempts are underway at Goddard to etch SrTiO3 to a
thickness of 25 microns or so. Also under consideration is uslng a

substrate with a lower specific heat. Work is being pursued under

Goddard sponsorship at a number of locations to attempt HTS deposition

on diamond, which has a volume specific heat 5 to 15 times lower that

alternate substrates at 80K. The ATM corporation (Conn.) is being

funded within the Small Business Innovation Research program, first

under Phase I and now under Phase II, to grow HTS thin films (¥BaCuO and



BiSCCO) via the MOCVDtechnique on artificially grown diamond films.
Initial attempts without a buffer layer have failed; buffer layer
development has begun and will be continued under Phase II. A small
purchase order was awarded to CVC {New York) to attempt sputter
deposition of YBaCuO on natural type lla diamond. Deposition without a
buffer layer resulted in poor adhesion. The initial attempt with a
polycrystalline MgO buffer layer resulted in good adhesion. At Catholic

University an attempt was made to deposit a thick film of YBaCuO on

natural diamond -- this also resulted in poor adhesion. NIST/Boulder

has implemented a laser ablation system and will attempt laser ablation

deposition on diamond. NIST and Goddard will also be looking into a

silicon based bolometer. Silicon as a substrate is a compromise choice

-- while not having as low a specific heat as diamond, there is much

more experience in working/thinning it, and various groups have already

deposited HTS thin films on silicon.

In addition to the time constant, the low-frequency excess noise in

HTS films needs to be controlled. It has been noted that minimization

of the exc_s_ _ise in YBaCuO films on SrTiO 3 requires c-axis
alignment. ,_,_v It is not known to what degree this is possible on

diamond: Undoubtedly the choice of buffer layers will play a key role.

As it has been noted tha_ thallium films can have high critical currents
even in unoriented form, _I thallium films appear to have better

intergranular contact and may be a candidate for low-noise, non-

epitaxial films on diamond- Alternatively, a bolow_ter could be made
with

a silico_3substrate_ and a SrTiO 3 buffer layer or a BaTiO3/MgAl20 4
buffer layer, upon which epitaxial c-axis oriented YBaCuO has been

grown.

Prospects for HTS Bolometers on Planetary Missions

Exciting data on the outer planets and their satellites have

already been obtained with fairly insensitive, thermal-type infrared

detectors. Future studies would benefit greatly from an improved

sensitivity detector: In principle, HTS bolometers could provide this
improved sensitivity. What needs to be demonstrated is superiority to

Schwarz-type thermopiles, which are capable of a D* of 3 to 4x10 = and a

time constant of about_25 ms; for the CIRS detector diameter of I.i mm

the NEP is about 3x10 -II W/Hz I/2 over wavelength ranges of 16 to 50

microns and 30 to I000 microns. To displace the thermopile detectors,

the HTS bolometer would need either to improve _he time constant to at
least I0 ms, or improve the D* to at least 7x10 =. If improved

sensitivity is demonstrated, certain environmental capabilities also

need to be demonstrated. Below is a brief list of nominal requirements

for the Cassini mission.

Lifetime/passivation (high vacuum): 12 years

Thermal cycling, 300K to 80K: numerous times

Radiation hardness: 15 krads, total dose

Launch vibration: ~15 g's, ~ 3 minutes.
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TABLE I CIRS INSTRUMENT PARAMETERS

TELESCOPE DIAMETER (CM):

_%_ERFEROMETERS:

TYPE:

SPECTRAL RANGE (cm'l):

SPECTRAL RESOLUTION (cm'l):

INTEGRATION TIME (see):

50

FAR-IR

Polarizing Michelson

10 - 300 200 - 1400

0.5 - 20 .05 - 20

50 50

FOCAL PLANES: FP2 FP3 FP4

SPECTRAL RANGE (cm'l):

DETECTORS:

PIXEL F-O-V (mrad):

PIXEL A_ (cm2sr):

D* (cm Hz 112w-l)

NEP (WHz'I/2):

NESR (W cm "2 sr'l/cm'l):

10-300

Thermopile
(1)

4.3

3 x 10 .2

3 x 109

3 x 10 "11

4 x 10 .9
(0.5 cm "1)

200-650

Thermopi]e
(1)

4.3

3 x 10 .2

2 x 109

5 x 10 "11

6 x 10 .9
(0.5cm "I)

600-1100

HgCdTe
(lx20)

.2

8 x 10 .5

3 x 1010

8 x 10 "13

4 x 10 "10

(5 cm -1)

1100-1400

HgCdTe
(lx20)

.2

8 x I0 5

5 x 1011

5 x 10 "14

2 x 10 "10
(5 cm "I)

DATABAND (Hz):

TEMPERATURE (K):

INSTRUMENT TEMPERATURE (K):

DATA BIT RATE:

POWER:

WEIGHT:

.4 - 12

170

INSTRLrMENT

ELECTRONICS/POWER SUPPLY
TOTAL

8 - 26

170

170

2000 Bits/sec

21 W (Avg):

19 Kg

27 Kg

24 - 44

8O

26W(Peak)

44-56

80
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The brightness
temperatures of typical nadir
emission spectra obtained by various

spacecraft;, The broad
spectral coverage permitted
unanticipated discoveries as well as
the simultaneous retrieval of many
atmospheric parameters including
temperatures, gas abundances, and
aerosol properties. CIRS will use
limb sensing of Saturn's and Titan's
stratospheres to obtain an altitude
resolution < one scale height for

temperature and composition
studies.
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